Notes on Algebraic-geometric Codes
نویسندگان
چکیده
Ideas from algebraic geometry became useful in coding theory after Goppa’s construction [8]. He had the beautiful idea of associating to a curve X defined over Fq, the finite field with q elements, a code C. This code, called Algebraic-Geometric (AG) code, is constructed from two divisors D and G on X , where one of them, say D, is the sum of n distinct Fq-rational points of X . It turns out that the minimum distance d of C satisfies d ≥ n− deg(G) .
منابع مشابه
Optimal rate list decoding of folded algebraic-geometric codes over constant-sized alphabets
We construct a new list-decodable family of asymptotically good algebraic-geometric (AG) codes over fixed alphabets. The function fields underlying these codes are constructed using class field theory, specifically Drinfeld modules of rank 1, and designed to have an automorphism of large order that is used to “fold” the AG code. This generalizes earlier work by the first author on folded AG cod...
متن کاملQuantum Algebraic-Geometric Codes
This is a Part III essay aiming to discuss the contruction of quantum error-correcting codes through the use of the theory of algebraic function fields, which produces codes with asymptotically good parameters. This exposition emphasises constructibility and several applications of the main theorem (theorem 6.2) are given. Prerequisites are the first 12 lectures of the Part III course Quantum I...
متن کاملOn the efficient decoding of algebraic-geometric codes
This talk is intended to give a survey on the existing literature on the decoding of algebraic-geometric codes. Although the motivation originally was to find an efficient decoding algorithm for algebraic-geometric codes, the latest results give algorithms which can be explained purely in terms of linear algebra. We will treat the following subjects: 1. The decoding problem 2. Decoding by error...
متن کاملAutomorphisms of F.K. Schmidt codes and a new method to derive cyclic sub-codes from algebraic geometric codes
We present a new method to obtain cyclic subcodes of algebraic geometric codes using their automorphisms. Automorphisms of algebraic geometric codes from F. K. Schmidt curves are proposed. We present an application of this method in designing frequency hopping sequences for spread spectrum systems. Algebraic geometric codes can provide sequences longer (better randomness) than the ones from Ree...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003